Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis.
نویسندگان
چکیده
Neuronal apoptosis occurs during nervous system development and after pathological insults to the adult nervous system. Inhibition of CED3/ICE-related proteases has been shown to inhibit neuronal apoptosis in vitro and in vivo, indicating a role for these cysteine proteases in neuronal apoptosis. We have studied the activation of the CED3/ICE-related protease CPP32 in two in vitro models of mouse cerebellar granule neuronal cell death: K+/serum deprivation-induced apoptosis and glutamate-induced necrosis. Pretreatment of granule neurons with a selective, irreversible inhibitor of CED3/ICE family proteases, ZVAD-fluoromethylketone, specifically inhibited granule neuron apoptosis but not necrosis, indicating a selective role for CED3/ICE proteases in granule neuron apoptosis. Extracts prepared from apoptotic, but not necrotic, granule neurons contained a protease activity that cleaved the CPP32 substrate Ac-DEVD-aminomethylcoumarin. Induction of the protease activity was prevented by inhibitors of RNA or protein synthesis or by the CED3/ICE protease inhibitor. Affinity labeling of the protease activity with an irreversible CED3/ICE protease inhibitor, ZVK(biotin)D-fluoromethylketone, identified two putative protease subunits, p20 and p18, that were present in apoptotic but not necrotic granule neuron extracts. Western blotting with antibodies to the C terminus of the large subunit of mouse CPP32 (anti-CPP32) identified p20 and p18 as processed subunits of the CPP32 proenzyme. Anti-CPP32 specifically inhibited the DEVD-amc cleaving activity, verifying the presence of active CPP32 protease in the apoptotic granule neuron extracts. Western blotting demonstrated that the CPP32 proenzyme was expressed in granule neurons before induction of apoptosis. These results demonstrate that the CED3/ICE homolog CPP32 is processed and activated during cerebellar granule neuron apoptosis. CPP32 activation requires macromolecular synthesis and CED3/ICE protease activity. The lack of CPP32 activation during granule neuron necrosis suggests that proteolytic processing and activation of CED3/ICE proteases are specific biochemical markers of apoptosis.
منابع مشابه
Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis.
The cytoskeletal protein non-erythroid alpha-spectrin is well documented as an endogenous calpain substrate, especially under pathophysiological conditions. In cell necrosis (e.g. maitotoxin-treated neuroblastoma SH-SY5Y cells), alpha-spectrin breakdown products (SBDPs) of 150 kDa and 145 kDa were produced by cellular calpains. In contrast, in neuronal cells undergoing apoptosis (cerebellar gra...
متن کاملCloning and expression of a rat brain interleukin-1beta-converting enzyme (ICE)-related protease (IRP) and its possible role in apoptosis of cultured cerebellar granule neurons.
Several members of the IL-1beta-converting enzyme (ICE) family of proteases recently have been implicated in the intracellular cascade mediating the apoptotic death of various cell types. It is unclear, however, whether ICE-related proteases are involved in apoptosis of mammalian neurons and, if so, how they are activated. Here we report the cloning of an ICE-related protease (IRP) from rat bra...
متن کاملInvolvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis.
Fas (Apo-1/CD95) belongs to the tumor necrosis factor/nerve growth factor receptor family and transmits apoptotic signals by binding to its ligand. Interleukin-1beta-converting enzyme (ICE), which shows substantial homology to the product of the cell death gene, ced-3, of Caenorhabditis elegans, is reported to be involved in Fas-mediated apoptosis. Using two human carcinoma-derived cell lines w...
متن کاملActivation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons.
Neurotoxicity induced by overstimulation of N-methyl-D-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neuron...
متن کاملPotassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species.
Potassium (K+) deprivation-induced apoptosis of cerebellar granule neurons requires new mRNA and protein synthesis. Using a fluorogenic substrate for interleukin-1beta converting enzyme (ICE), we show that K+ deprivation of cerebellar granule neurons induces cycloheximide-sensitive ICE-like protease activity. A peptide inhibitor of ICE-like protease activity, Ac-YVAD-chloromethylketone (Ac-YVAD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 2 شماره
صفحات -
تاریخ انتشار 1997